您当前位置:首页 > 航天器

开普勒太空望远镜

开普勒太空望远镜(又称开普勒任务),是美国国家航空航天局设计来发现环绕着其他恒星之类地行星的太空望远镜。使用NASA发展的太空光度计,预计将花3.5年的时间,在绕行太阳的轨道上,观测10万颗恒星的光度,检测是否有行星凌星的现象(以凌日的方法检测行星)。开普勒太空望远镜以德国天文学家翰内斯·开普勒的名字命名。

开普勒太空望远镜于2009年3月7日3时49分57秒(UTC时间)在卡纳维拉尔角空军基地发射。2013年5月15日,开普勒太空望远镜由于反应轮故障,无法设定望远镜方向,在经过数个月的努力后,美国航空航天局2013年8月15日宣布放弃修复开普勒太空望远镜,正式结束搜寻太阳系外类地行星的主要任务。

中文名称开普勒太空望远镜英文名称Kepler Space Telescope
研制国家美国发射时间2009年3月7日3时49分57秒(UTC时间)
发射场卡纳维拉尔角空军基地运载工具德尔塔2 7925运载火箭
质量1039千克口径0.95米

探测原理

开普勒太空望远镜在设计上用于探测遥远恒星以确定类地行星具有多高的普遍性。开普勒将利用“凌日法”对行星进行间接探测。除了揭示一颗行星的存在外,这种光信号也能告诉我们这颗行星的体积以及运行轨道。在此之后,科学家将利用其它测量手段确定所发现的每一颗行星是否位于适于生命居住的区域,或者说测量这颗行星与其所绕恒星之间的距离,以确定其表面是否存在液态水。

开普勒太空望远镜探测行星的原理是:当恒星系统中的行星运行到开普勒号与恒星之间时,由于行星的遮挡,开普勒太空望远镜光度计传感器接收到的恒星亮度会变弱。地面科学家可以根据恒星亮度的这种周期性的微弱变化来推算出行星的大小和轨道周期等数据。开普勒太空望远镜能探测到的这种亮度微弱变化可以小到百万分之十左右。这一技术方法已经被科学家采用了大约十年,并帮助了天文学家发现了300多颗较大的行星。而开普勒太空望远镜将目标对准更小的行星,像地球一般大的宜居住行星,它们都围绕其母恒星运转。

探测方式

“凌日”是指在观测者看来,行星从其母恒星前面经过的现象。比如在地球上可以观测到水星凌日或金星凌日,这时人们看到太阳表面上仿佛有个小黑点在缓缓移动。同样,观测其他恒星系统时也会看到凌日现象,开普勒太空望远镜便是通过相关观测数据来计算行星的特点。

开普勒太空望远镜可以测量凌日行星的公转周期,据此可大致计算出行星轨道大小;开普勒太空望远镜还可以观测到凌日深度(恒星亮度减弱的程度),据此计算出行星的大小。对于行星的母恒星,可以根据其光谱、光度等参数估算其质量。综合这些数据,可以推测一颗行星是否适合生命存在。

开普勒太空望远镜在天鹅座和天琴座内观测的视场

图:开普勒太空望远镜在天鹅座和天琴座内观测的视场

开普勒太空望远镜观测的目标区域位于银河系中的天鹅座和天琴座一带,因为这个方向上的观测较少受太阳等天体影响,有利于持续观测。此外,这一区域内也存在较多的恒星及附属行星。

任务详情

开普勒太空望远镜不是运行在环绕地球的轨道上,而是在尾随地球的太阳轨道上,所以不会被地球遮蔽而能持续的观测,光度计也不会受到来自地球的漫射光线影响。这样的轨道避免了引力摄动和在地球的轨道上固有扭矩,可以有一个更加稳定的观测平台。光度计指向天鹅座和天琴座所在的领域,远离了黄道平面,所以在绕行太阳的轨道上,阳光也不会渗漏入光度计内。天鹅座也不会被古柏带或小行星带的天体遮蔽到,所以在观测上是一个很好的选择。

开普勒太空望远镜的运行轨道

图:开普勒太空望远镜的运行轨道

这样选择的另一个好处是开普勒所指向的方向是太阳系绕着银河系运动的中心,因此开普勒所观察到的恒星与银河中心的距离大致上与太阳系是相同的,并且也都靠近银河的盘面。这是个很重要的事实,如果星系也有适居带的位置,就如同建议的地球殊异假说。

开普勒太空望远镜的质量是1039公斤,口径是0.95米,主镜(在地球轨道之外最大的镜片)1.4米,视野(FOV)有105deg2(大约12度的直径),大约是胳膊伸直时一个拳头遮蔽的视野。光度计有一个柔软的焦点提供良好的光度测量,而不是清晰的图像。结合的光度差异精确性(CDPP),对一颗m(V)=12类似太阳的恒星,进行6.5小时的影像综合是20ppm,已包括恒星本身预期可能的 10ppm光度变化。而一颗类似地球的行星凌星造成的光度变化是84ppm,而且轨道经过恒星中心时至少将持续13小时。焦平面由42个1024×2200的CCD组成,每个画素的大小是27微米,是发射至太空中最大的照相机。这个阵列由一条连结到外面的热导管来冷却。CCD每3秒中读出一次资料,并且可以暂留15分钟,只有对应到有兴趣目标恒星画素的资料才会被保存,并透过遥测传回到地面。这个任务在生命周期中,包括持3.5年的运作,估计要花费6亿美元。

任务的运作

开普勒任务由外面位于科罗拉多州波尔德市的大气和太空物理实验室(LASP)负责运作。太阳阵列在每年位于分至点时会转动至正对着太阳的方向,这些转动将用来优化照射到阵列上的阳光,并使热辐射器保持指向深太空的方向。同时,LASP和贝尔太空科技公司(该公司负责建造太空船和仪器)从位于科罗拉多州波尔德市的科罗拉多大学的控制中心进行操作。LASP进行基本的任务计划和科学资料最初的收集和分发工作。

NASA每星期两次透过X-波段的通信线路与太空船联系,下达指令和进行状态更新,每个月一次使用Ka带下载科学性的数据,传输的最大速率是4.33Mb/s。开普勒太空船在船上会自己进行部分的资料分析,只在必要时才会传送科学性的数据,以保持带宽。

在任务期间由LASP收集的遥测科学资料会被送至位于马里兰州巴尔的摩约翰霍普金斯大学校园内的太空望远镜科学研究所开普勒数据管理中心(DMC)。这些遥测科学资料会被解码并且处理成未校正的FITS-并由DMC格式化成科学数据产品,然后通过在NASA的艾美斯研究中心的科学操作中心(SOC)进行校正和最后的处理。SOC将送回校正和处理好的数据产品和科学结果给DMC做长期的归档和经由在STScl的多任务档案(MAST)分送给世界各地的天文学家。

任务目标

开普勒太空望远镜计划对银河系内10万多颗恒星进行探测,希望搜寻到能够支持生命体存在的类地行星。

一、测定在多样性光谱型恒星适宜居住区域内部或周围的陆地行星和大型行星数量

这一行星测定数据源自行星的数量和大小,以及被监控恒星的数量和光谱类型。即使开普勒太空望远镜发现这一数据为零,也具有很重要的科学意义,毕竟证实了更多数目的恒星体系经过了搜索勘测。排除了可能出现适宜居住行星的可能性。

二、测定不同体积大小行星的分布,以及行星的半长轴

测定不同体积大小行星的分布状况主要源自观测该行星微弱光亮的递减度和所在恒星体系的特征。

基于开普勒第三定律,通过测定恒星的质量和周期年龄特征,可进一步确定行星半长轴相应的数据资料。据悉,开普勒第三定律的内容是:行星距离太阳越远,行星的受力越弱,行星的加速度减小,故运行得越慢,行星的公转周期就越长。行星半长轴还可通过地面分光镜和恒星模型的观测结果得出,测定行星半长轴出现的不确定因素是与所在恒星体系中中心恒星质量有关。

三、评估多恒星体系中行星的数量和行星的轨道分布状况

这项评估可对比一对多恒星体系中发现行星系统的数量来实现,如果该多恒星体系是紧密地结合在一起,或者是可通过高角分辨率观测的较广阔空间体系,使用地面上的分光镜仪器便可观测这样的多恒星体系。

四、测定短周期巨行星的密度、质量、体积大小、反照率、半长轴

短周期巨行星可通过它们的反射光变化来探测发现,同样,它们的半长轴测定也是源自于使用开普勒第三定律测定恒星的质量和周期年龄特征。

凌日行星(planetary transit)的数量占已测定一定大小行星数量的10%。在太阳系内,凌日是内行星经过太阳与地球之间,对太阳面产生部分遮挡的一种天文现象。如果这两颗内行星的一颗恰好从地球与太阳之间经过,地球上的观察者就会看到有一个黑点从太阳圆面通过,需时大约为一个多小时,人们把这种现象称为凌日。对于太阳系外的恒星而言,凌日则是指该恒星的行星经过该恒星和地球的连线之间,对地球观察者产生部分遮掩恒星的天文现象。

按照探测计划,开普勒太空望远镜在探测任务的最初几个月内将发现一定数量的短周期巨行星,并测定这些行星的大小、半长轴,通过反射光调制振幅的测定来确定其反照率,行星的密度由开普勒太空望远镜的分光镜和该行星出现凌日现象时进行测定,该方法曾在测定HD209458b行星密度时使用过。

五、使用互补技术,测量每个光度角度识别发现的行星系统中额外的行星数量

使用空间干涉仪(SIM)和地面多普勒分光镜来搜寻未出现凌日现象的超大质量行星,进一步提供每个已探测行星系统的详细资料。

六、探测具有行星系统的恒星的性质特征

科学家使用地面观测仪器探测每个恒星的光谱类型、发光度等级和金属性,此外,还有恒星的旋转比率、表面亮度多相性,从光度计数据直接获得的恒星活动性。使用开普勒太空望远镜震观测仪(asteroseismology)等仪器测定恒星的年龄和质量。

未来的探测任务

基于开普勒太空望远镜的勘测分析结果,未来空间干涉仪(SIM)和“类地行星搜索者号”(TPF)探测器将进行更深入的类地行星的探索发现,据悉,“类地行星搜索者号”预定2011年升空。

在开普勒太空望远镜的基础上,未来的探测任务还需要具备以下勘测条件:在日后的行星搜索项目中识别确定主恒星的常用恒星特征;确定需要进行搜寻的空间体积;向空间干涉仪(SIM)提供具有陆生行星体系的勘测目标列表。

科学成果

开普勒太空望远镜于2010年4月1日宣布的第一个主要研究结果。正如天文学家预期,最初发现的行星都是短周期行星。随着任务持续继续,更多长周期行星候选逐渐被发现。2011年12月,总共有2,326颗候选行星被发现。其中207颗与地球大小相似、680颗是超级地球、1181颗为海王星大小、203颗为木星的大小、55颗则比木星更大。此外,48颗候选行星被发现位于可居住区。开普勒太空望远镜团队估计,大约有5.4%的恒星拥有地球大小的行星候选,而17%的恒星则有多颗行星。

2011年

开普勒20e、开普勒20f与金星、地球的对比

图:开普勒20e、开普勒20f与金星、地球的对比

2011年12月,两颗候选行星开普勒20e与开普勒20f被证实环绕类太阳的恒星开普勒20。

2013年

依据加州理工学院的天文学家在2013年元月发表的一项研究成果,银河系拥有1000亿至4000亿颗行星,即每一颗恒星至少拥有1颗系外行星。此一研究结果是基于对开普勒-32恒星的行星系统,认为银河系中的恒星有行星环绕是很普遍的。在2013年1月7日,他们宣布又发现461颗系外行星候选者。开普勒观测得越久,它可以检测出周期更长与更多的行星。

在2013年宣布的新候选者,KOI-172.02是一颗在适居带环绕着与太阳相似恒星的类地球系外行星,是可能存在着外星生命的“主要候选者”。

2014年

2014年2月13日,科学家宣布发现数百个可能为行星的天体,其中有几个大小与地球相约,且位于适居带中。

2月26日,科学家宣布从开普勒数据中,证实了715颗新的系外行星。发现所运用的新方法称为“多重性确认”,即从过去在聚星系统周围发现的行星的确认率进行推算。这种方法用在多行星系统上,可以大大加快多个新行星的确认过程。发现的新行星中,95%比海王星小,其中包括开普勒-296f在内的4颗行星,大小低于地球的2.5倍,而且位于适居带中,即其表面温度适宜液态水的存在。

开普勒所得出的数据也有助超新星的观测和研究。由于它采集数据的频率为每半小时一次,所以对于监视这种短期天文事件极为有用。

2014年12月18日,美国国家航空航天局宣布K2阶段任务发现了首颗系外行星:一个编号为HIP 116454 b的超级地球。研究团队在为展开K2任务做准备的工程数据中,发现了这颗行星的标记。由于只探测到一次凌日事件,所以须作出进一步的径向速度测量。

2015年

2015年1月6日,开普勒太空望远镜团队宣布,确认系外行星已超过1000个;其中,最新发现的三个行星,开普勒438b、开普勒442b与开普勒440b,分别处于它们各自太阳的适居带;在这三个新行星里,有两个可能是由岩石构成。

1月27日,英国伯明翰大学研究团队发布,从分析开普勒太空望远镜数据,发现最古老的行星系,至少有5颗太阳系外行星围绕着年龄为112亿岁的恒星开普勒444运转。

7月23日,NASA宣布发现系外行星开普勒-452b,其距离地球1400光年。开普勒-452b围绕其恒星开普勒-452公转,距离主星位置适合液态水的存在。开普勒-452b的体积比地球大60%,有较大可能为岩石星球。它距离其主星恒星的距离,和地球和太阳之间的距离相似,这颗恒星本身距离地球430秒差距,在天鹅座。它比太阳稍亮,年龄较太阳大15亿年。

出现故障

2013年5月15日,开普勒太空望远镜由于反应轮故障,无法设定望远镜方向,因此被迫停止其搜寻系外行星任务。在经过数个月的努力后,2013年8月18日,美国国家航空航天局宣布放弃修复开普勒太空望远镜,正式结束其主要科学任务。但开普勒太空望远镜仍可能被用于其他科研工作。

开普勒太空望远镜
航天器信息 浏览次数:2166次
最新更新:2015-08-07 14:55
爱航天网简介 | 联系我们 | 我要投稿 | 免责声明 | 隐私保护 | 意见反馈 | 网站合作 | 网站导航 | 爱航天网 | 航天精神
爱航天网(www.aihangtian.com),致力于推动航天知识科普教育、传播航天精神。爱航天网,为中国航天加油,为中国航天喝彩!
网站违法和不良信息举报邮箱:jubao#aihangtian.com(请将#换成@),欢迎您提供航天新闻、发射任务、文字、图片、视频等资料
Copyright © 2015  爱航天网版权所有  京ICP备12042125号-2