您当前位置:首页 > 航天器

火星勘测轨道飞行器

又称“火星侦察轨道器”

火星勘测轨道飞行器(英文名称:Mars Reconnaissance Orbiter,简称MRO),是美国国家航空航天局在2005年的火星探测任务之一。主要高分辨率对火星进行详细考察,并且为往后的火星地表任务寻找适合的登陆地点,同时为这些任务提供高速的通讯传递功能。

火星勘测轨道飞行器,于2005年08月12日早上7时43分成功发射,并于2006年03月10日进入火星轨道。

中文名称火星勘测轨道飞行器英文名称Mars Reconnaissance Orbiter
又名火星侦察轨道器研制国家美国
质量1031千克发射时间2005年08月12日早上7时43分
发射场卡纳维拉尔角空军基地运载工具宇宙神5 401运载火箭

任务背景

火星勘测轨道飞行器将会为美国国家航空航天局未来的火星地面任务铺路,包括预计在2007年发射的凤凰号登陆器与2009年发射的好奇号火星车。火星勘测轨道飞行器上的高分辨率仪器将会帮助这些计划评估适合的登陆地点,以确保可以进行最多的科学研究,并且降低登陆风险。同时火星勘测轨道飞行器的通讯能力将会为火星地表任务提供重要的资讯传递功能,甚至在登陆时提供重要的导航资讯;此外,火星勘测轨道飞行器也可能为之前失败的火星任务找出可能的失败原因,如火星极地着陆者号与英国的Beagle计划。

发射与任务时间表

2005年04月30日:火星勘测轨道飞行器抵达发射地点卡纳维拉尔角空军基地

2005年08月12日:火星勘测轨道飞行器于早上7时43分使用宇宙神5运载火箭成功发射。在发射与准备进入行星轨道的过程中并未发生任何异常状况。

2005年08月15日:对MARCI进行测试与校正。

2005年08月25日:在UTC下午3时19分32秒时,火星勘测轨道飞行器进入离火星一亿公里的地方。

2005年08月27日:火星勘测轨道飞行器进行第一次轨道修正,主推进发动机燃烧了15秒钟,进行每秒钟7.8米的速度修正。

2005年11月18日:进行第二次轨道修正。轨道器的六个辅助发动机燃烧了20秒,进行每秒钟75厘米的速度修正。

2006年01月29日:在UTC下午3时19分32秒时,火星勘测轨道飞行器进入离火星一千万公里的地方。

2006年03月10日:火星勘测轨道飞行器成功进入火星轨道,并且预计在接下来的数周内降低轨道高度以进行科学观测计划。

2006年3月24日,美国国家航空航天局下属的喷气推进实验室公布了火星勘测轨道飞行器发回的火星表面第一批由CTX与MCI所拍摄的高清晰照片。这次拍摄尽管以校准相机为目的,却证明了飞船的探测能力。

从2006年11月开始,火星勘测轨道飞行器将会在两个地球年的时间之内进行各项科学研究作业,之后的延伸任务将会包括为登陆器与探测车进行通讯与导航资讯传递。

探测仪器

火星勘测轨道飞行器最主要的目的为寻找火星上是否有水存在的证据,并且收集火星大气与地理的特征。轨道器上共搭载六项科学仪器与两项科学工具;此外,也搭载三项可以用在未来太空任务的技术实验装备。

HiRISE(高分辨率成像科学设备)

HiRISE摄影机包含一台0.5米的反射式望远镜,这是深太空任务中使用过最大的望远镜。在300公里高度的轨道上,它的火星地表分辨率将可以达到0.3米。(GoogleMaps的分辨率约为1米,一般的卫星照片可达到0.1米)。这台摄影机将可撷取三个彩色频段的影像:蓝-绿(400至600nm)、红(550至850nm)与近红外线(800至1000nm)。

红频段的影像可以达到20264像素宽(在300公里的高空中约可撷取6公里宽的地表影像),蓝-绿与近红外线的频段则是4048像素宽。HiRISE上的电脑将根据轨道器的对地速度进行即时自动摄影,因此所照出来的影像在理论上是没有高度限制的;而在实务上影像大小的限制为HiRISE电脑上的内存容量(约有28Gb),因此红频段的最大影像约为20000×40000像素,蓝-绿与近红外线频段为4000×40000像素。单一未压缩影像约会占用16.4Gb的储存空间。
为了寻找合适的登陆地点,HiRISE亦可产生成对的立体影像,让地形的分辨率准确率达到0.25米。

CTX(背景摄影机)

CTX摄影机将会提供灰阶影像(500至800nm),最高可拍摄40公里宽的影像,影像中每个像素的分辨率约为8米。CTX主要将与其他两个摄影装备配合,以提供观测地点的背景地图。

摄影机的光学装置包括了一台焦长350公厘的Maksutov望远镜以及一台5064像素宽的线性阵列CCD。摄影机上的内存将可容纳160公里长的影像。

MARCI(火星彩色成像机)

MARCI将以五个可见光频段与两个紫外线频段拍摄火星影像以组成火星全球影像,以帮助研究人员描绘火星每天、每季与每年气候的特征,并且为火星提供每天的天气预报。

CRISM(火星专用小型侦察影像频谱仪)

CRISM为一个红外线/可见光频谱仪,提供科学家关于火星矿藏的详细地图。CRISM在300公里的高空中分辨率约为18米,并且在450至4050nm的频段工作,分析频谱中的560频道。

MCS(火星气候探测器)

MCS为一个九个频道的频谱仪,一个为可见光/近红外线,剩下八个为远红外线,这些频段可以用来观测气温、压力、水蒸气与沙尘等级。MCS将会观测火星地平面上的大气,并且将大气以五公里为一单位垂直分层,针对每一层的大气进行测量。

这些测量值将会组成火星的每日全球天气图,让科学家了解火星天气的基本变量:气温、压力、湿度与沙尘密度。

SHARAD(浅地层雷达)

SHARAD主要为探测火星极地冰冠的内部结构,并且收集火星地层下的冰、岩石甚或是地下水的结构。SHARAD将会在15至25MHz的高频无线电波工作,垂直分辨率将可达到7米,并且探测火星地表下一公里深的地层;水平分辨率为0.3公里,探测3公里宽的地表。SHARAD将会与MarsExpress上的MARSIS雷达一起工作,因为MARSIS雷达的分辨率较低,但可深入地表下较深之处。这两个雷达均由意大利太空总署操作。

Gravity Field Investigation Package(重力场探测套件)

火星重力场的变化可以由火星勘测轨道飞行器的速度变化推导而来,而火星勘测轨道飞行器的速度变化可以由轨道器接收地球无线电讯号时的而得知。

大气层结构探测加速仪

轨道器上灵敏的加速器可以用来侦测轨道器所在位置的大气密度。这项实验仅会在准备进入火星轨道时的空气煞车阶段,且当轨道器进入火星大气层较密的高度时进行。

Electra超高频通讯与导航套件
Electra为一超高频天线,将与为未来的火星计划进行通讯,并且帮助这些计划的登陆器导航、登陆与定位。
Optical Navigation Camera(光学导航摄影机)

光学导航摄影机将会拍摄火星的两个卫星(火卫一与火卫二)在背景星象上的移动,以精确侦测火星勘测轨道飞行器的轨道。本任务并不是必须达成的重要任务,主要是测试该系统,让未来的火星计划可以更加精确的进入火星轨道与登陆火星。本设备已在2006年二月与三月成功测试完成。

探测器设计

主结构

位在丹佛的洛克希德马丁公司负责组合整体结构与附属的仪器,火星勘测轨道飞行器主要的结构均是由强化碳纤维化合物铝制蜂巢结构版所组成,而钛金属所制造的燃料槽占了整体结构与质量的绝大部分,并且维持了探测器的结构完整性。

火星勘测轨道飞行器总质量为低于2180公斤、空重(不含燃料)为低于1031公斤。

动力系统

火星勘测轨道飞行器的主要电力来源为两片太阳能板,两片太阳能板能够独立进行上下左右的移动。每片太阳能板的大小为5.35×2.53米,而在太阳能板表面共9.5平方米的范围内包含了3744个光电电池。这些太阳能电池的转换效率非常高,约可将26%的太阳能量转换为电力,并且可以提供绝大多数仪器运作所需的32V电力。这两片太阳能板在火星约可提供2000瓦特的电力。

除了太阳能板之外,轨道器还使用了两个可充电式镍氢电池,当太阳能板无法面对太阳,或是火星将太阳光遮住时便会使用电池供给电力。每个电池约可提供50安培小时的电力,但轨道器无法使用全部的电力,因电池放电时连带的电压也会跟著降低,当电压低于20V时电脑便会停止工作,因此在设计上将只会使用约40%的电池电力。

电脑系统

轨道器的主电脑为一133MHz的RAD750处理器,这颗处理器为强化辐射防护的PowerPC处理器,可以在太阳风肆虐的深太空中提供可靠的运算处理。探测资料则是存放在20GB的快闪存储器中,内存的量虽然似乎很充足,但是跟仪器所收集到的各项资料相比就不见得有多大了,比如说HiRISE的火星地表影像每张最高就可以达到28Gb。

电脑的操作系统则是VxWorks,并另外加上许多的防护与监测协定。

导航系统

导航系统将会在整个任务过程中提供位置、航道与高度的各项资讯。

16个太阳传感器(其中8个是备份)将会提供轨道器方向与太阳的相对位置资讯。

两个恒星追踪器将会提供轨道器完整的位置与高度资讯。恒星追踪器仅是两个普通的数码相机,自动拍摄已分类过的星空影像进行自动定位。

两个惯性导航设备将提供轨道器飞行的资讯,每个惯性导航设备包括了三个加速器与三个陀螺仪。

通讯系统

通讯系统将使用大型天线,利用一般深太空所使用的频段(X-band,8Ghz)传送资料,也将会使用可以高速传输的Ka-Band(32GHz)传送各项资料。预计从火星传送到地球的最大传输速度为6Mb/s,约为以往火星任务的10倍。此外,轨道器另外有两个小型低增益天线,在紧急与特殊事件时提供低速通讯,比如说发射与进入火星轨道时。

推进系统

燃料槽共可容纳1175升(1187公斤重)的联胺单推进燃料,而这些燃料的70%将会使用在进入火星轨道时。

轨道器上共有20个火箭推进器:

六个大型推进器,主要使用在进入火星轨道时。

六个中型推进器,主要提供航道校正与高度控制。

八个小型推进器,主要是一般作业时修正高度与航道用。

轨道器中亦包含四个动量轮,提供轨道器精准的高度控制,比如拍摄高分辨率影像时,某些震动将会模糊影像。

科学成果

冰块

根据2009年雷达的测量报告显示,火星北极地区冰盖下的冰块的体积有821000立方千米, 这等于地球上格陵兰岛冰块的30%。

撞击坑的冰

2009年9月发表的一篇科学文章揭示,在一些新的撞击坑周围有纯净的水冰。这个事实暴光后,这些冰后来似乎逐渐随着升华而消失了。新的撞击坑由CTX摄象机发现,CRISM后来证实冰在五个位置的存在。

氯化物矿藏

根据MRO和其他一些火星探测器的数据显示,科学家已经发现火星上分布着广泛的氯化物。这些氯化物是由富含水分的矿物蒸发形成的。其中的碳酸盐,硫酸盐,二氧化硅应该都会率先沉淀下来。而且火星车已经在火星表面上发现了硫酸盐和二氧化硅。有氯化物的地方过去可能存在着各种生命形式,因此,这是人类探索火星是否存在生命遗迹的理想地区。

雪崩

MRO的CTX和HiRISE摄象机已经拍摄到,在火星北极盖附近陡峭的山地发生的大量雪崩的照片。

流动的水

2011年8月4日,NASA宣布MRO侦察到火星在温暖的月份里,其表面似乎存在流动的液态水。

火星勘测轨道飞行器
航天器信息 浏览次数:2319次
最新更新:2015-08-11 21:04
航天新闻推荐
爱航天网简介 | 联系我们 | 我要投稿 | 免责声明 | 隐私保护 | 意见反馈 | 网站合作 | 网站导航 | 爱航天网 | 航天精神
爱航天网(www.aihangtian.com),致力于推动航天知识科普教育、传播航天精神。爱航天网,为中国航天加油,为中国航天喝彩!
网站违法和不良信息举报邮箱:jubao#aihangtian.com(请将#换成@),欢迎您提供航天新闻、发射任务、文字、图片、视频等资料
Copyright © 2015  爱航天网版权所有  京ICP备12042125号-2